- 1 J. Paul, A. Rosen, K. G. Paul and M. L. Smith, *Biochim. Biophys. Acta, 722, 209* (1983).
- 2 C. H.-Barlow, P. I. Ohlsson and K. G. Paul, *Biochemistry, 15, 2225* (1976).
- 3 J. E. Crowell, E. L. Garfunkel and G. A. Somorjai, Surf. *Sci.,* 121. 303 (1982).
- 4 D. P. Woodruff, B. E. Hayden, K. Prince and A. M. Bradshaw,Surf: *Sci., 123, 297* (1982).
- 5 J. Paul and A. Rosén, *Phys. Rev., B26*, 4073 (1928).

O₂₆

Preparation and Structural Characterization of Nitrosyl Complexes of Ferric Porphyrinates

W. ROBERT SCHEIDT, YOUNG JA LEE

Department of Chemistry, University of Notre Dame, Notre Dame, Ind. 46556, U.S.A.

and KEIICHIRO HATANO

Department of Pharmaceutical Science, Nagoya City University, Nagoya, Japan 46 7

Nitrosyl complexes of ferric porphyrinates have been prepared by reaction of perchloratoporphinatoiron(III) complexes with nitric oxide. Two species have been structurally characterized: aquonitrosyl- (*meso*-tetraphenylporphinato)iron(III) perchlorate, $[Fe(TPP)(NO)(H₂O)]ClO₄, and nitrosyl(octaethylpor$ phinato)iron(III) perchlorate, $[Fe(OEP)(NO)]ClO₄$.

Fig. 2. The $\pi-\pi$ dimer in the solid state.

Crystal data: $[Fe(TPP)(NO)(H₂O)]ClO₄$, monoclinic, $a = 10.303(2)$ Å, $b = 8.124(2)$ Å, $c = 21.364(8)$ A, and $\beta = 97.76(2)^{\circ}$, $Z = 2$, space group $P2_1/n$, 3999 observed data, $R_1 = 0.057$, $R_2 = 0.079$, all measurements at 96 K. [Fe(OEP)(NO)]ClO₄, monoclinic, $a = 12.890(2)$ Å, $b = 20.363(3)$ Å, $c = 14.969(2)$ Å, and $\beta = 95.48(2)^\circ$, $Z = 4$, space group $P2_1/n$, 5956 observed data, $R_1 = 0.058$, $R_2 = 0.063$, all measurements at 292 K.

All complexes are low-spin $\{FeNO\}^6$ species. $[Fe(OEP)(NO)]ClO₄$ is the first five-coordinate lowspin ferric porphyrinate to be structurally characterized. The Fe-N-O moiety is essentially linear in both species. For $[Fe(TPP)(NO)(H_2O)]ClO₄$, Fe-N_p =

Fig. 1. Structure of [Fe(OEP)(NO)] ClO₄.

1.999(6) Å, Fe-N(NO) = 1.652(5) Å, and Fe-O = 2.001(5) A. For $[Fe(OEP)(NO)]ClO₄$ (Fig. 1), Fe-N_n = 1.994(1) A, Fe-N(NO) = 1.644(3) A; the iron(\overline{III}) atom is displaced 0.29 Å from the mean plane of the porphinato core. The structural parameters of both complexes are appropriate for low-spin ferric porphyrinates. $[Fe(OEP)(NO)]ClO₄$ forms a remarkable $\pi-\pi$ dimer in the solid state (Fig. 2). The two planar cores are parallel with an interplanar separation of only 3.36 A.

Q27

Corrinoid Catalysis of Thiol Oxidation

D. W. JACOBSEN

Division of Biochemistry, Department of Basic and Clinical Research, Scripps Clinic and Research Foundation, La Jolla, CalijI 92037, U.S.A.

Under appropriate conditions, thiols can react with corrinoids to form relatively stable complexes [l-7] , or reduced corrinoids [1, 2, 8-l 1 *]* . If alkyl halides are present during the reduction of corrinoids by thiols, alkyl corrinoids are produced [4, 9, 12, 13]. In the presence of oxidizing substrates, corrinoids will efficiently catalyze the oxidation of thiols to their corresponding disulfides [14-181. In view of the important role that enzyme sulfhydryl groups play in corrinoid-coenzyme-dependent catalysis [19, 20], we have further characterized aerobic thiol oxidation catalyzed by a selected group of biologically important corrinoids and have determined the stoichiometry of the reaction.

Hydrogen peroxide and superoxide have been identified as reaction products during the aerobic catalysis of 2-mercaptoethanol [ME, 21] by the corrinoids listed in Table I. The reactions were conducted in a polarographic cell equipped with a Clark O_2 electrode [22]. The corrinoids used to initiate the reactions were prepared as described previously [23, 24] and their purity was determined by hplc $[25]$. H₂O₂ was detected by adding catalase to the reaction system. This resulted in an abrupt increase in O_2 concentration which is consistent with the catalytic activity of the enzyme. As anticipated, the pseudo-first order rate constant (k_1) of $O₂$ consumption in the presence of catalase decreased 50 per cent. Using a similar approach, superoxide dismutase was used in an attempt to detect the presence of O_2^- as a reaction product. This was unsuccessful except for one corrinoid, namely Aq-Cbl (Table I). Thus, during the catalysis of ME oxidation by Aq-Cbl, O_2^- is the primary reaction product. In the presence of dismutase, k_1 for the Aq-Cbl-catalyzed reaction decreased approximately 50 per cent which is consistent with the catalytic activity of this enzyme. H_2O_2 was also detected during Aq-Cbl-catalyzed oxidation of ME and may have been produced by the spontaneous dismutation of O_2^- .

Disulfide bond formation was monitored spectrophotometrically [26] during the oxidation of DTE. Pseudo-first-order rate constants for $O₂$ disappearance and for DTE_{ox} appearance were in good agreement (Table II). These results, which differ from previously published studies [16, 17, 27], suggest that the reactions and their stoichiometries for aerobic oxidation of mono- and dithiols by corrinoids are:

$$
2\text{ RSH} + \text{O}_2 \rightarrow \text{RSSR} + \text{H}_2\text{O}_2 \tag{1}
$$

$$
R\begin{pmatrix} SH & S \\ +O_2 \rightarrow R \begin{pmatrix} S \\ +H_2O_2 \end{pmatrix} \end{pmatrix}
$$
 (2)

 a ME = 2.5 x 10⁻² M; 25 \pm 0.2 °C. ^bAt the midway point of O₂ consumption, the polarographic cell was irradiated with light from a tungsten-filament high intensity lamp for the time indicated. ^CMeasurement was made at the indicated pH only.